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We consider random diffusive motion of classical particles over the edges of Archimedean lattices. The
diffusion coefficient is obtained by using periodic orbit theory. We also study deterministic motion over a
honeycomb lattice without the possibility for an immediate return to the preceding node, controlled by a tent
map with the golden ratio slope. Numerical analysis is performed to confirm the theoretical results.
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INTRODUCTION

Archimedean lattices are a complete set of infinite tilings
of a plane with regular polygons in which all vertices are
equivalent (see Fig. 1). Their naming came from Kepler’s
reference to Archimedes’ description of regular solid polyhe-
dra which are related to these two-dimensional lattices. Be-
cause of their symmetry they have been studied in mathemat-
ics [1], crystallization [2,3], statistical mechanics [4], and
percolation [5,6]. The most familiar are square, triangular,
and honeycomb lattices which are also regular.

By means of periodic orbit theory the averages of observ-
ables of a system can be calculated using the properties of
the shortest periodic orbits [7]. The theory can be used for
analysis of hyperbolic as well as intermittent deterministic
systems. Its applications range from calculation of the escape
rate for three-disk billiards [7], the diffusion constant for
piecewise linear maps [8] or the Lorentz gas [9], to semiclas-
sical quantization of collinear helium [10].

The random motion of particles confined on the edges of
an Archimedean lattices is diffusive. This means the mean-
square displacement from the starting position of the par-
ticles grows linearly with time. The diffusion constant is pro-
portional to the slope of the growth. The dynamics of
particles over Archimedean latices can be described using the
corresponding fundamental cell (domain). It consists of
neighboring nodes selected and assigned in such a way that
every possible trajectory can be exactly represented with a
sequence of nodes in the fundamental domain only. Then a
finite Markov partition of the phase space is possible and
movement is expressed with a finite Markov graph. Further-
more we study deterministic motion over the hexagonal lat-
tice. It is assumed that an immediate return to the previous
vertex is not possible and the particles are guided by a tent
map with the golden ratio slope. Such defined movement is
chaotic and diffusive. The diffusion constant can be calcu-
lated for both types of movement with periodic orbit theory.
We have made a computer simulation of the motion of the
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particles and extracted the diffusion constant from numerical
data. We found a very good agreement in the results from the
theory and simulation.

As nomenclature we use the general notation of Griin-
baum and Shephard [11]. Every lattice label has the form
(n{",n52,...). In clockwise rotation around the vertex, n; rep-
resents the number of sides of the polygon and «; denotes the
number of adjacent polygons of the same type. For example,
at every vertex in the first lattice in Fig. 1, (3,12%), one
triangle and two consecutive dodecagons are connected.

PERIODIC ORBIT THEORY: A BRIEF TOUR

In this section we sketch the main lines of the periodic
orbit theory in a way similar to Ref. [9] (it is worked out in
greater detail in Ref. [7]). We will focus on discrete time
systems only, because movement of particles over the edges
of the Archimedean lattices can be represented with a map-
ping. The position of a point in a d-dimensional space X,
changes in (discrete) time 7, as some function f(X). After ¢

iterations it maps to f"(f{)zf‘(f'(- . -f'(ﬁ)))zf(,. The displacement
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FIG. 1. Archimedean lattices with notation by Griinbaum and
Shephard [11] which is explained in the text. Adapted from [6].
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from the starting position f (X)—X is the (integrated) observ-
able we are interested in investigating. For systems exhibit-
ing diffusive transport, as a measure of the growth of the
mean-square displacement <[f"(§()—§(]2) the spatial diffusion
constant appears:

= lim S (%~ 07, (1)

[—0

By means of an auxiliary variable 8 one can consider the
following average:

( eﬁ(ﬁ,—ﬁ)>M , (2)

carried over all initial points X in the phase space M. The
average at infinity grows exponentially, with rate

s(B) =lim — ln<eﬁ("f "))M (3)

11—

As a result of symmetry, as is the case for Archimedean
lattices, there is no drift

os 1
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The second derivatives
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form a diffusion matrix which is generally anisotropic. The
diffusion constant can be expressed through the rate s with

p-13 2
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Assuming uniform initial density of representative trajecto-
ries, the mean in Eq. (2) is

e J 4% &P
|M] I
1
dkdy PIVSG-F(R).  (7)
"

where we have used the phase space volume |M|= Jdx. The
Dirac function checks if X maps to some ¥ in ¢ iterations and
makes the dependence of the mean from the map explicit.
Systems such as Archimedean lattices which are spatially
periodic can be studied in the fundamental domain only. This
means that instead of position X in the global phase space

M, one can take the position x in the fundamental cell M.

The displacement from the starting position At(f()=i"(§()—f(
can also be obtained from the fundamental cell only, by
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As the r—oo limit behavior of the average [Eq. (7)] is
needed, it is calculated with a transfer operator £’ whose
kernel is

Li(y,x) = ePA N 8y - £(x)). (9)

The growth rate s is the leading eigenvalue of the operator £’
because it is dominant for large 7. In the r—o0 limit the
double integral is equal to the trace of the operator L'

tr L= f dx ePA™ o(x —f(x)). (10)
M

For hyperbolic systems this trace can be expressed through
all t-periodic orbits x,=x (7 is not necessarily the least period
for the orbit),

= PAIX)
tr L'= e
' X=X |det[1 - Jt(x):”

Wlth Jacobian J; --(9f /dx;. We denote with T, A,, and J,

J7r(x) the length (durat10n) displacement, and Jacoblan
respectlvely, that correspond to some periodic orbit p in the
fundamental domain M. If its length 7,=t/r, one has A’
=rA, and Jt=J;, because the displacement A is cumulative
and we can apply the chain rule for the Jacobian J. Then the
trace can be expressed through prime cycles only,

eBrAP

wll= X oo (12)
pr:x;er:t |det(1 - Jp)|

(11

Prime cycles are those that are not repeats of simpler ones.
From the matrix identity In(det £)=tr(In £) which can be
found for example in Ref. [12], the trace of the operator £ is
related to its spectral determinant

<t
det(l1 —zL) = exp(— > Z;trﬁ’)
=1

oo
T, e BrA p

z'r
2 |det<1—J;>|)' 9

Extraction of the rate s from the determinant can be done
with the substitution z=¢~* which further leads to the corre-
sponding dynamical { function

H ( eﬁAp—sTp>
é“(,B ), Al

where A,=II\, is the product of the expanding eigenvalues
of the Jacobian J,,. The fractions in the products
e,BA],—sTp
.=

TAyl

=11 eXp(—

(14)

(15)

are known as local traces of the periodic orbits. As can be
seen they contain information about the orbit length 7, and

P
the value of the observable A, as well as the weight of the
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orbit A,,. Thus averages over chaotic trajectories are stated in
terms of prime periodic orbits. Roughly speaking every pe-
riodic orbit represents the orbits in its vicinity which is de-
termined by the expanding factor A, If it is bigger then the
neighborhood is smaller, which implies that the weight or
“importance” of the orbit is smaller. In this paper we will use
the probability of occurrence of a periodic orbit as its weight.

The infinite product in Eq. (14) can be replaced by an
infinite sum

Ma-)=1-2 0k, 1, -1, (16)
14 P

The sum is over all nonrepeating combinations of prime
cycles. For Archimedean lattices the sum is a polynomial,
because their Markov graph is finite. The second derivatives
in Eq. (6) can be stated in terms of derivatives of the ¢
function F(s,B)=1/{=0

Ps #F_os &PF [ ds \*@F JF
(9[3[ (9,8, (?B[ aﬂi(%' &Bl as os
(17)
Finally, the expression for the diffusion constant has the form
1 (A,
1A -
2d (T,)

with mean-square cycle displacement {|A ,|*) and mean cycle

length (T},)
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That is the main result of the periodic orbit theory for the
diffusion constant which we will use for Archimedean lat-
tices.

CALCULATING A DIFFUSION CONSTANT

We study random motion of classical particles confined to
the edges of Archimedean lattices. Assuming energy conser-
vation the speed changes only its direction at nodes of the
lattice and its modulus can be taken to be 1. We also suppose
that at integer moments particles are located at vertices. Thus
the movement can be analyzed with mapping from a vertex
to one of its neighbors. For simplicity, the transition prob-
ability p to all neighbors is considered equal. Because of
conservation 2p=1, the probability is the inverse of the co-
ordination number N (the number of edges at every vertex of
the lattice)—p=1/N. The full phase space for the mapping is
a discrete set containing all vertices. The fundamental cell
should be made with as few nodes as possible in order to
simplify further calculations. The nodes in it must be denoted
in such a way that every trajectory in the lattice can be
uniquely determined with the list of corresponding nodes in
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FIG. 2. Fundamental cell of the (3%2,4,3,4) lattice with assign-
ments of the vertices.

the fundamental domain. For example on Fig. 2 is shown the
fundamental cell for the most complex lattice for this prob-
lem, (32,4,3,4), and the assignment of the vertices. On the
basis of the fundamental domain we can make a transition
matrix with elements containing information for the transi-
tion probability and the displacement of the particle A, ; that
is made during that transition

T,= Pi,jeBA""_ST (20)

We have attached the term ™7 to obtain as expression simi-
lar to the trace [see Eq. (15)] and we note that T=1. The 12
possible displacements for all lattices under consideration are
given by

2k L2k
Ay=cos| — |e,+sin| —|e,, k=0,1,...,11,
12 12 /-
21
where e, and e, are unit vectors on the x and y axes, respec-
tively. For exponentials of the displacements one can assign

.Ak = €‘8Ak. (22)
Then the transition matrix 7 for the (32,4,3,4) lattice is

0o A Ay Ay Ay 0 0 A
A 0 Ay A 0 Ay A 0
Ay Ay 0 Ay A 0 0 A
Apg A A 0 0 A As 0
As 0 A 0 0 A, Ay A

0 As 0 A Ay 0 Ay Ap

0o A, 0 A, A Ay 0 A,
A0 Ay, 0 A Ay A 0

(23)

with transition probability p=1/5. Before proceeding with
computation of the determinant det(1—z7), some simplifica-
tion can be achieved using the relationship between expo-
nentials (22) taking into account the displacements (21).
Those relations are

046116-3



L. BASNARKOV AND V. URUMOV

PHYSICAL REVIEW E 73, 046116 (2006)

TABLE 1. Diffusion constant for Archimedean lattices.

Lattice N (1)* N (2)* N (3)* Theoretical result Theoretical value Numerical value Error X107
(3,12%) 3 4 6 (7+4V§)/ 15 0.92855 0.92858 2.71
(4, 6, 12)b 3 5 7 2+ \5)/4 0.93301 0.93302 0.64
(4,82 3 5 8 (3 +2\5)/6 0.97145 0.97113 3.07
Hexagonal 3 6 9 1 1 1.00062 5.69
(3, 4,6, 4)b 4 8 12 2+ \5)/4 0.93301 0.93298 0.64
Square 4 8 12 1 1 0.99952 3.60
Kagomé 4 8 14 1 1 0.99906 5.06
(34,6)b 5 9 15 14/15 0.93333 0.93341 1.61
(33,4%) 5 10 15 (11 +2\s§)/ 15 0.96427 0.96544 3.52
(3%2,4,3,4) 5 11 16 4(2+\s‘§)/15 0.99521 0.99396 5.14
Triangular 6 12 18 1 1 1.00072 3.18

N(i) gives the number of nodes that can be reached from any selected node in not less than i steps.
b . . 7 . .
Numerical results correspond to averaging from 2 X 10’ trajectories.

Ay=Ag+A,  Ar=AA,
Ay=A,+As, A= AAs,
Ag=—Ay, Ag=1/A,,
A;=—A,, A;=1/A,,

(24)
Ag = —A() —A4, “48 = 1/(./4()./44),

Ag=—A;-As, Ag=1/(AAs),
Ajg=—Ay, A= 1A,
Ay =-A4s, A =1As.

Calculation of the determinants is done by means of sym-
bolic mathematics software and they are arranged in polyno-
mial form. The variable z is used as bookkeeping variable
and after obtaining the determinant we take z=1. For ex-
ample the determinant det(1—-z7) for the matrix (23) con-
tains terms like

3.3

-pz 6_35%

As

Then Egs. (19), (21), and (22) are applied for obtaining the
mean-square cycle displacement and mean cycle length. To
the term (25), taken as example, corresponds the square dis-
placement |A|>=(1+13)? and length T=3, which are used in
the sum (19) with a minus sign.

Table I contains diffusion constants of all Archimedean
lattices obtained by means of periodic orbit theory in column
five as well as their numerical value in column six. The
factor 1/2d=1/4 which corresponds to the dimension of the
space, was omitted because all shown values are close to
unity. To confirm the theoretical results, numerical simula-
tion with 10° different trajectories was performed for all lat-
tices. For those having values very close to each other (indi-
cated in Table I) 2 X 10 trajectories were taken instead. The
value of diffusion constant is obtained with the best fitting
curve. Errors shown in the table are from the least-squares
method. As can be seen the results from theory and simula-
tion agree with good accuracy. Columns two, three, and four

(25)

in the table contain information on the numbers of nodes
N(i) accessible in not less than i steps. From the table it can
be seen that among the lattices with the same coordination
number N(1) the diffusion constant is larger if the connec-
tivity of the lattice is more pronounced. By better connectiv-
ity we mean bigger N(2) or N(3). The exceptions are the
square and (3,4,6,4) lattices. However, for square lattices the
particle can move for a while in one direction and thus make
bigger displacements. The diffusion constant is smallest for
the (3,122) lattice because it has cavities and thus the dis-
placements are generally smaller for the same number of
steps.

DETERMINISTIC DIFFUSION ON HONEYCOMB
LATTICE

Diffusion constant can be calculated with the same theory
for some types of deterministic motion over lattices. For sim-
plicity in this section we assume movement on a honeycomb
lattice for which the immediate return to the preceding vertex
is forbidden. Then six possible states related to directed
edges are possible, as it is depicted on Fig. 3.

Because normal diffusion needs a chaotic motion it is
simply attainable in the following way. We relate an internal
variable y with value in the unit interval y € [0,1] to every
particle. At every vertex the variable changes its value with
the tent map

Ve 3

FIG. 3. The six possible states of a particle moving on a hon-
eycomb lattice, which cannot immediately return to the previous
node.
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) Ay, y<1/2, 26)
EE A -y, y=12,

with slope A which plays the role of a weight factor in the

trace [Eq. (15)]. The sequence of the values y,=g4 (x) for

almost all x from the unit interval chaotically wanders in the

unit interval if the slope is 1 <A <2. From the sequence y, a

list Y,, of symbols is formed according to the rule

L, y,<1/2,
Y, = (27)
R, y,=1/2.

It simply tells whether the value of the internal variable is L
(left) or R (right) from the critical value (1/2). The node to
be visited next is determined by the symbol Y,,. If it is L, the
particle proceeds to the left, otherwise it goes to the right.
For different starting values y, different trajectories are at-
tainable.

The slope A plays a key role in the dynamics, because it
poses restrictions on the sequences Y,. For some values the
corresponding Markov graph is finite and the diffusion is
normal. For example when A=2 all sequences of the sym-
bols L and R are possible and the diffusion constant is D
=3/4. More interesting is the case when the slope has a
value equal to the golden ratio A =(y5+1)/2. The successive
repetition of the symbol L is then impossible, which means
that after every left turn, a right turn must follow. It implies
that the only nonzero matrix elements of the transfer matrix
are
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exp[B(A;_; + A;) —2s]
ii = A2 s

_exp[BA; ]

= . 2
1,i—1 A ( 8)

Repeating the same procedure as for the random motion over
the Archimedean lattices, one can obtain the diffusion con-
stant D=3/445.

CONCLUSION

We have analyzed simple models, both stochastic and de-
terministic, with diffusive transport. The symmetry, hyperbo-
licity, and finiteness of the associated Markov graph lead to
applicability of the periodic orbit theory for calculating the
diffusion constant. Analytic expressions were obtained for
the diffusion constants for all Archimedean lattices and they
are in good agreement with Monte Carlo simulations. The
hexagonal, square, Kagomé, and triangular lattice have equal
diffusion constants, which is also the largest. Two other lat-
tices (4,6,12) and (3.,4,6,4) share an equal diffusion constant.
The smallest diffusion constant is found in the (3, 122) lattice
which is characterized by the lowest connectivity between
lattice sites. The model can serve as a tool for studying the
basic properties of periodic orbit theory. A higher-
dimensional lattices can also be analyzed with the same
theory.
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